A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation

  • ID: 2622, RIV: 10126871
  • ISSN: 0001-7140, ISBN: neuvedeno
  • zdroj: Acta Universitatis Carolinae. Mathematica et Physica
  • klíčová slova: discontinuous Galerkin method; a posteriori error estimates; Helmholtz decomposition
  • autoři: Ivana Šebestová, Vít Dolejší
  • autoři z KNM: Dolejší Vít

Abstrakt

The paper deals with a numerical solution of the nonstationary heat equation with mixed Dirichlet/Neumann boundary conditions. The space semi-discretization is carried out with the aid of the interior penalty Galerkin methods and the backward Euler method is employed for the time discretization. The a posteriori upper error bound is derived.