Regularization parameter estimation for large-scale Tikhonov regularization using a priori information
- ID: 2515, RIV: 10051684
- ISSN: 0167-9473, ISBN: neuvedeno
- zdroj: Computational Statistics and Data Analysis
- klíčová slova: Regularization; parameter; estimation; for; large-scale; Tikhonov; regularization; using; priori; informations
- autoři: Rosemary Renaut, Iveta Hnětynková, Jodi Mead
- autoři z KNM: Hnětynková Iveta
Abstrakt
This paper is concerned with estimating the solutions of numerically ill-posed least squares problems through Tikhonov regularizqation. Given apriori on the covariance structure of errors in the measurement data b, and a suiatble statistically-chosen regularization parameter, the Tikhonov regularized least squares functional J approximately follows a chi2 distribution with M degrees of freedom. Using the generalised singular value decomposition a regularization parameter can then be found such that resulting J follows this chi2 distribution, see Mead and Renaut (2008)