A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation
- ID: 2622, RIV: 10126871
- ISSN: 0001-7140, ISBN: not specified
- source: Acta Universitatis Carolinae. Mathematica et Physica
- keywords: discontinuous Galerkin method; a posteriori error estimates; Helmholtz decomposition
- authors: Ivana Šebestová, Vít Dolejší
- authors from KNM: Dolejší Vít
Abstract
The paper deals with a numerical solution of the nonstationary heat equation with mixed Dirichlet/Neumann boundary conditions. The space semi-discretization is carried out with the aid of the interior penalty Galerkin methods and the backward Euler method is employed for the time discretization. The a posteriori upper error bound is derived.