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Motivation

Human circulatory system

Structure of large blood vessels
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Infroduction and some modeling aspects

Due fo the highly complex structure of blood and arterial/venous vessels, one
has to do drastical SIMPLIFICATIONS, i.e. one has to set up a MODEL.

Modeling the circulatory system or even just a small part of it has to account for:

the inferdependence of blood and blood vessels: they are very complex,
coexist and INTERACT

the need of a model for blood (fluid)

the need of a model for the arterial wall (elasfic structure)
the way to describe the inferaction ~» coupling

the well-posedness of the model: does it make sense?

the uftility of the model: what does it tell us?
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Infroduction and some modeling aspects

How to model blood? Blood is a suspension of:

plasma

pblood cells (erythrocytes, leucocytes, platelets)

vy

Rheological properties of blood:

in the abbsence of shear stress the erythrocytes form a continuous network

increasing the shear sfress up to the so-called yield stress breaks up the
continuous sfructure of erythrocytes and allows the blood to flow.

for a stress value above the yield stress erythrocytes tend to attach side by
side to form rouleaux (aggregates).

further increasing the shear stress breaks up the aggregates and finally

only individual erythrocytes remain.
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Infroduction and some modeling aspects

More formally:
blood is an incompressible fluid

in large arteries it can be considered to be Newtonian ~» (Navier-)Stokes
eqguations

actually, blood is a non-Newtonian fluid.

A Newtonian fluid is one for which the Cauchy stress tensor has the form
Ty = —pI+ 2vD(v), where D(v) = = (Vv + Vv') is the stretching tensor.
p denotes the pressure and v is the fluid’s velocity.

Any other constitutive equation for the Cauchy stress fensor generates a
non-Newtonian fluid model.

We will focus in these lectures on Newtonian fluids, however we also want to see
some facts about the non-Newtonian ones, since they provide a more realistic
(though still less encountered in fluid-structure interaction problems) modeling
tool.
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Infroduction and some modeling aspects

Generalized Newtonian fluids:

Ty = —pI +n(y)D(v)

with n a function of the principal invariants of the stretching tensor D:

Ipn = trace (D(v)) =divv =0 (incompressibility)
IIp = %[( trace (D(v)))? — D(v) : D(v)] = —%D(v) : D(v)
IIIp = det(D(v)).

n(+) is also known as viscosity function and + is the shear rate:
U

= U/h (rate of shear strain)
- 4?2 = —4IIp = 2trace (D(v))?

Remark: Newtonian fluids are particular cases of generalized (non-Newtonian)

fluids, for n = 2v = constant,
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Infroduction and some modeling aspects

Some examples of generalized Newtonian fluids:

Power-law fluids

Ty = —pl 4 2K|4IIp|("~D/2D,

n(y) = 2K5" 1,

where n:=power-law index, K:=consistency.

¢ forn < 1 (shear thinning):

no := limx 0 N(¥) = 00, Noo := lims o N(¥) = 0.

@ forn > 1 (shear thickening):

no :=lims o N(¥) = 0, Neo = limy_, 5 (%) = oo.

Powell-Eyring fluid (Powell, Eyring 1944)

sinh~ 1 (4X) ) |

n(y) = 2(7700 + (10 — No) Y

Cross model (Cross 1965)

o — Moo )

n(y) = 2(7700 + 1+ (4A)1-n

N0, Neo, A Material constants.

N0, Neo, A, N MaAterial constants.
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Infroduction and some modeling aspects

Viscoelastic fluids:

Rivlin-Ericksen fluids:

Ty = —pl 4+ CA1(v) + a1 C(v) + a2C?(v) + B(frace (A2(v)) - A1(v), where

Ai(v) = 2D(v) (Rivlin-Ericksen tensor)
Cv) = (0:+v-V)AI(V)+A1(V)VV+ (VV)IAL(V).

3rd grade fluid: ( > 0, a1 >0, 8> 0, —/24(0 < a1 + az < 1/24(0.
2nd grade fluid: ( > 0, a1 > 0,8=0, a1 + a2 = 0.

Newtonian fluid: 8 = a1 = a2 = 0.

Oldroyd type fluids: T¢ = —pl + 7, 7 = 75 + 7, Where 7s = 2vsD is the
solvent contribution, and 7, is the polymeric contribution.

Generalized Oldroyd-B fluids: Ty = —pI + 7, with

T+ Ay [T' (V)T — T(Vv)t] — (A1A + As [Al —(VVv)A; — Al(VV)t],

A= \/%Troce (A%), thus (A1) = 2(7700 + (110 — 700) Hli(rlAJ;M)-

A, A1, A2 are material constants, ng = limsy 0 (A1), Neo = limy oo N(A1).
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Infroduction and some modeling aspects

Modeling the blood vessels

blood vessels and their structure
(http://www.biomed.metu.edu.tr/)
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relationship between size, number of
blood vessels and cross-sectional area
(Quarteroni, Tuveri, Veneziani ‘00)

Vessel Radius Number Area Wall thickness

(cm) (cm?) (cm)
Aorta 1.25 1 4.5 0.2
Arteries 0.2 159 20 0.1
Arterioles 1.5x 1073 5.7 x 107 400 21073
Capillaries 3x 1071 1.6 % 1010 4500 1% 104
Venules 1103 1.3%x 109 4000 2x 1074
Veins 0.25 200 40 0.05
Vena cava 1.5 1 18 0.15

Tunica
adventitia
connective tizsue 0

o)

)

internal elastic lamina

external elastic lamina
smaooth muscle cells
Tunica media
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Infroduction and some modeling aspects

Some models for blood vessels:

memlbranar vascular walls (Navier equations) -neglect anisotropy and
assume rotational symmmetry (Renard ‘94).

Eh ¢ Uy
pwhattur = kGhOzur — 1 _ CQ (RO 0u, + R_g) + P4
Eh /¢
pwhattuz — 1 _ CQ (RO azuz + 8zzuz) + @27

where u(r, z,t) = (u,(r, z,t), u-(r, z,t)):= displacement of the wall,
h:=wall thickness, R (z):= vessel reference radius at rest,

k:= Timoshenko shear correction factor, ;= shear modulus,

pw = Volumetric mass of the vessel wall,

®,;,1 = 1,2 are forcing terms due to external forces.

independent rings model (Perktold & Rappitsch ‘94) -neglect viscosity of
the fluid and longitudinal displacements of the wall;

E 1

- _<pw - pO)'

w0 —
pwlnt + TR M T ],

Here p., — po is the fransmural pressure: p.,:= pressure on the wall
essentially due to the fluid, pg:= reference value of the external pressure.
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Infroduction and some modeling aspects

Some models for blood vessels (continued):

generalized string model (Quarteroni, Tuveri, Veneziani ‘00):

pwhattu = a0zz22u + b0y zu + cOtrzu + du + P.

Here w is the radial displacement, a, b, ¢, d are constants depending on
the material characteristics of the wall fissue, and @ is the external force.

more generally (comprising the 3D case): p,,0¢tu = Div T, + pwfuw,
where T, is the Piola-Kirchhoff stress tensor for the arterial wall.
We shall come back later to this situation.

circular cylindrical shell model (only radial displacements):

Ottur + ur + k(azzzzu’r’ + 287;7;99“7’ + 89999“’!’) — fw,rad + ff,?“ady

where f,, ,qq:= the radial component of the force applied fo the elastic
wall, fr rqq4:=the radial component of the force applied by the fluid,
0 € [0, 2):= the angular coordinate, k = = is a dimensionless

0
parameter, whose value decreases with decreasing thickness of the shell,

_ __ER® ._ - _ _Eh ._ - -
K = o107 = flexural stiffness, D = ez extensional stiffness.
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Infroduction and some modeling aspects

Basic features: a fluid is moving in confact with an elastic stfructure. They interact
at the inferface between the two media (fluid/solid).

Basic challenges:
the fluid-structure interface depends on time

the fluid equations are naturally given in the Eulerian description, while
those for the elastic structure follow a Lagrangean one. One typically
carries out an Euler-to-Lagrange fransformation of the fluid formulation.

Advantages:
a unified description
fime-independent inferface

Drawback: more complicated equations for the fluid.
one tipically deals with parabolic equations for the fluid and with
nhyperbolic equations for the structure. Since their solutions have different

regularity properties, this leads to significant difficulties when coupling the
two media. However, these difficulties disappear:

iN the stationary case, since both systems become ellipfic
if one adds a hyperviscosity term to the structure equations

the coupled problem is highly nonlinear.
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Infroduction and some modeling aspects

P ¢
T~

t=0 t>0
Notations:
(1s: domain of the elasfic structure; (2 ;: domain of the fluid;
2(0) = Qs(0) UQ£(0) (reference configuration);
Q(t) = Qs(t) UQ¢(t) (current configuration);
' +5(0): fluid-structure interface in the reference configuration;
[ ¢4 (2): fluid-structure interface in the current configuration;
X € Q(0): material coordinates;
x € Q(t): coordinates in the current configuration;
u(X, t): displacement of the elastic structure. Thus, ¢(X,t) = u(X,t) + X is the
deformation of the elastic structure.
v(x,t): velocity of the fluid; p(x, t): fluid pressure.
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Infroduction and some modeling aspects

Basic equations of motion:

® For the (viscous, incompressible) fluid:

pf(atV+V-VV) = divTe 4 psfy in Qf(t), te (0,7)
dvv = 0 in Q(t), te(0,T)
+ boundary conditions

+ inifial conditions,

where T¢ is the fluid Cauchy fensor and p is the fluid’s density.

® For the elastic structure:

psOrru = DivTs+ psfs  in Qg(t), t € (0,T)
+ boundary conditions
+ inifial conditions,
with Div := div x, T's the Piola-Kirchhoff stress tensor, and ps the density of
the elastic structure.

¢ For the coupling: continuity of velocities and of the stress distribution on
Ffs (t)
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Infroduction and some modeling aspects

Which boundary conditions should we choose?

This is of course depending on the specific problem we want to consider:

Example 1: fluid completely enclosed by a thick elastic vessel

Qs

w1

BCs for the fluid: here the interface I'
coincides with the fluid boundary, thus we
ask for confinuity of velocifies on I':

v(x) = dru(X).

BCs for the elastic structure:

u = 0onI' (the wallis clamped on its outer
boundary)

T¢(v,p) - n=Ts(u) nonos\ I,

Actually, here the inferface 1"y, coincides
with the inner boundary of the elastic vessel,
l.e. Ffs = 00 \FS.

Also notice that we have different settings for
the fluid and the solid equations (Euler vs. Lo-

grange).
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Infroduction and some modeling aspects

Example 2: fluid moving in a channel bounded by a flexible structure

BCs for the fluid:

at the ends of the channel: periodicity, prescribed velocity
(direction), prescribed pressure, ‘do nothing’, a.o.

on fthe rest of the boundary (fluid-structure interface 1" ;). equality of
velocities and of stresses

BCs for the elastic structure:

on the outer boundary: u = 0 (if I's is clamped), respectively
n-Ts(u)=0(»fTs(¢) is allowed to move)

on the inner boundary (fluid-structure interface 1" ¢, ): equality of
velocities and of the sfresses

at the ends of the channel: periodicity, clamped, ?77?.

Regularity problems arise when two different types of BCs (e.g.,
Neumann and Dirichlet) meet on a portion of the boundary (Ciarlet
'88).
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Infroduction and some modeling aspects

The analysis of the previous models can become very complicated. One can
make certain simplifications:

[sofropic elasticity (same response of the material in all directions):

The most general constitutive equation is

Ts = ¢pol + 1B + ¢2B?,

where B is the left Cauchy-Green strain tensor. The Lagrangean displacement is

u(X,t) = ¢(X,t) — X,

and the Eulerian displacement is

u(x,t) =x — ¢~ (X, t).

Then B = F'F, where Fi; = gggé is The deformation gradient.
J

C = FF! is the right Cauchy-Green tensor.

The tensors E = %(C —I),e= %(I — B~ 1) are called the Lagrangean,
respectively the Eulerian strain fensor.
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Infroduction and some modeling aspects

The Lagrangean gradientis Grad u = F — I, thus C = (I + Grad u)(I + (Grad u)?)
and

E = %[Grod u+ (Grad u)? + (Grad u) - (Grad u)?].

op 1

Observe that F-* = —<—, st. the Eulerian gradient writes grod u =T —F 1,

therefore B~ = (I — gréd u)(I — (grad u)*) and it follows that

e = %[grod u+ (grad u)® 4 (grad u) - (grad u)*].

Small displacement gradients:

If we have to do with a material which does not infer substantial deformations,
we can assume that the spatial rate of change of the displacement is very small,
l.e.

Grad u(X,t) = O(e), ek1l, VX, t.

Neglecting all terms of order O(e?) we obtain that the Lagrangean strain tensor
E is aproximated by the infinitesimal Lagrangean strain tensor
1
Eg = 5(Grad u+ (Grad u)?).
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Infroduction and some modeling aspects

Observe that the Lagrangean and Eulerian gradients of u coincide at first order

iN e
grad u = Grad u + O(€?).

Indeed, we can write

I-F ! = I-[I+F-D]!1=1-I—(F-D)+F-1)>2+...]
= F-I+0O(F -1)?
= F-I+0((Gradu)?)
= F-I+0().

The statement follows from Gradu =F —Tandgradu =1 - F~ 1,

As O conseguence, we can use the Eulerian formulation for both the fluid and
the structure equations. Moreover, observe that the nonlinear strain tensors E
and e have become linear.

This makes life easier, especially when studying the stationary case. However, in
spite of the above simplification, the coupled problem (with the corresponding
boundary and initial conditions) is still very difficult fo solve in the time-dependent
case, mainly because of the fime moving interface ', (¢), which is itself
unknown.
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Infroduction and some modeling aspects

Actually, Ty (t)={¢€R3 : ¢(X,t) =u(X,t)+X, X T, (0)}

lime-independent inferface:

Assume u is infinitesimal and time-independent on the interface. Then

['rs(t) =145(0), ¥Vt > 0. This is a substantial simplification, which allows handling
the coupled system in an easier way, however the price we pay is the lost of an
important feature of our problem.

The fluid-structure interaction problem becomes

pr(Ov+v-Vv) = divTe+pefy In Qp(0) x (0,7
dvv = 0 in Qf>0)x(0,7)
v(0) = wvo In Qf(0)
psOppu =  divTs+ psfs in Qg(0) x (0,T)
u = 0 on TIgx(0,7T)
u(0) = wug Iin Q(0)
v = 0Otu on TIf,(0)x(0,T)
Tr-n = Ts-n on Iy (0)x(0,7T)
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Some mathematical preliminaries

Question: is the involved coupled initial boundary value problem well posed?

Answers:
Who cares?
Studying well posedness can help:

fo better understand the numerical issues arising at the discretization
level

getting some clues about how to do the numerics
modifying the model in a reasonable way.
In which sense?

There are some nonexhaustive existence results. One always has to specify
in which sense is meant the solution.

Maybe. Apparently yes.
One can build very complex models for which it is very hard 1o prove
existence, though numerics seems to do well.
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Some mathematical preliminaries

Once we have set up our model, energy estimates can fell us a great deadl
about it. To illustrate this, let us consider a typical situation:

¢ The fluid equations:

n 1

Qs orv +v-Vv —div Ty = ff in Qf(t)
s dvv = 0 inQ)
V(O) = wvp In Qf(O)

¢ The coupling:

v(x+u(x,t),t) = O0wu(x,t), x €I rs(0)
Tr(v,p)(X+ulX,t),t) - n = Ts(uX,t)) n(X,t)

¢ The equations for the elastic structure:

Oiru —divTg(u) = fs in Qg(0)
u = 0 on Ig
u(0) = wug Iin Q4(0)
Ts(u) = Mtraceoc(w)I+ 2uo(u), o(u)= 1(Vu + Vut).
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Some mathematical preliminaries: energy estimates

If (v, p) and u exist over the fime interval (0,7T), then:

¢ multiply the Navier-Stokes equations for the fluid by v and integrate over
Q¢ (t) fo get

/ 8tv-v—|—/ D(v):D(V)—/ pdiVV—i—/ (v-V)v-v
Qf(t) Qf(t) Qf(t) Qf(t)

:/ ffv—|—/ Tr(v,p) ng-v.
Qg () LCrs()

¢ multiply the Navier-Lamé equations for the elastic structure by u and
infegrate over 25(0) := Q) to get

/QS Ortu - Oru + (A + 2p) /QS o(u) : o(O¢u)

:/ fsatu+/ Ts(u)-n~8tu+/ Ts(u) - nt - Oru.
Q) FfS(O) Ffs(t)

S
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Some mathematical preliminaries: energy estimates

¢ add the previous equations and use the interface conditions fo obtain

/ 8tv-v—i—2y/ |D(v)|2—i—/ (V-V)v-v—i—/ Oitu - Oru
Qf(t) Qf(t) Qf(t) Q

S

S

—|—(A—|—2,u)/ o(u) : o(0¢u) :/ ffv—l—/ fs0ru.
Qs Qf(t) Q

@ this can be rewritten as

1
—/ 8t\v\2—|—/ \D(V)|2—i—/ (v-V)v-v
2/ Q4 (t) Q (t)

1d 1 d
+ - — 8tu2—|——>\—|—2,u—/ au2=/ fV—i—/ fsOu.
2 dt QS’ | 2( >dt QS| ( )| Qg (t) / Qs

¢ now use Reynolds’ fransport theorem

d
Sl WP anPe [ wPeven
dt Ja,(t) Q (t) Tfo(t)
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Some mathematical preliminaries: energy estimates

and use the incompressibility condifion to deduce

/ (V-V)V-VZE/ v-n-|v|?
Q (t) 2T (1)

Summarizing, we obtain

1d
2 dt

1d

1 d
v|? + 20 / DO+ [ o+ s+ 2w / o(w)?
Q(t) Qy (t) 2 dt Q. 2 dt Q.

:/ ffv—l—/ fs0:u.
Qf(t) Q

S

Now integrate in time to deduce that
2 2
IVIlLee (0,712, (1)) T IVIL2 0,711 2 (1))

2 2
+||u||W17OO(O,T;L2(QS)) + ||u||LOO(0aT§H1(Qs)) S C’

where C'is a constant depending on the data of the problem.
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Some mathematical preliminaries: energy estimates

Remarks:

The presence of the convective term in the Navier-Stokes equations is
essenfial in the case of a time-moving interface. We have seen that his
term has the role to balance the movement of the interface. Indeed, this
Is what we would expect, since in the Lagrangean form it enfers in the
expression of the total derivative and the lafter commutes with the spatial
integration over the reference fluid domain.

Without this term there is no energy estimate, therefore the problem with
the fluid equations lacking it is most probably not well posed, since we
cannot recover the stability result obtained for the solution on the previous
slide. This would also reflect itself in problems arising during discretization:
there might not be a stable algorithm for the simulation of such a problem.

—> we cannot simplify the model involving a noncylindrical fluid domain
upon just taking the Stokes equations instead of the Navier-Stokes ones!!!

This has been first obbserved by Errate, Esteban & Maday in 1994 for a 1D
fluid-structure intferaction problem and confirmed ever since in many
papers. We will encounter again this issue later on in these lectures.
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Some mathematical preliminaries: energy estimates

Remarks (continued):

The coupling conditions make sense both physically and mathematically.
They have been set in a ‘natural” way based on our commmon sense and
during the process of deducing the a priori estimates it came out that
they describe indeed (now from a mathematical point of view) the
energy balance between the fluid and the sfructure.

In order to derive the previous uniform bounds in the respective spaces we
assumed that we were dealing with ssmooth enough domains. However,
the regularity of the fluid-structure boundary is not granted: it is one of the
unknowns of the problem. But here we were only deriving some a priori
estimates... We shall see later how tfo handle the problem of an irregular
domain.
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A (short) survey of existence results

The stationary case:

Here the main difficulty relies on the different formulations of the fluid equations
(Eulerian description) and of the elastic structure (Lagrangean description). An
Euler-to-Lagrange transformation leads to a unified description, however the fluid
equations become very complex, their coefficients depending on the sfructural
displacement.

& Grandmont ‘98: study of a 2D/ 1D FSI problem, where a Stokes fluid is partially
bounded by an elastic beam.

& Grandmont ‘02: study of a 3D/3D problem describing the interaction of a
Navier-Stokes fluid with an elastic vessel. The |latter completely encloses the fluid
and is modelled by the nonlinear Navier-Lamé equations.

& Bayada, Chambat et al. ‘03: analysis of a 2D/ 1D Stokes-rod coupled problem
with nonhomogeneous boundary conditions.

& S. ‘06: analysis of a 3D/3D Stokes flow in an elastic cylinder with thickness; the
behavior of the structure is modelled by the linearized Navier-Lamé equations
and periodic conditions are assumed at the ends of the cylinder.

& S. ‘07 study of a 3D/3D Navier-Stokes fluid in a flexible tube, whose walls are
modelled by a (nonlinear) elastic structure. BCs: prescribed velocities for the fluid
at the tube’s ends, clamped outer boundary for the stfructure + condifions on the

stresses at the tube’s ends.
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A (short) survey of existence results

The time dependent case:

cylindrical domains

fime-moving domains

Cylindrical domains (infinitesimal displacements): there is a plethora of papers
handling this sifuation. To make a selection, here we are only concerned with the
case of a fluid through a flexible tube or contained in an elastic vessel.

2D fluid/ 1D structure:

& Cani¢ & Mikeli¢ '03: study of a creeping flow through a long tube with a
membranar wall; the fluid is driven by a time-dependent pressure drop
between the tube’s ends; asymptotic techniques are used in order to
obtain Biot-type equations for effective pressure and effective
displacements.

3D fluid/2D structure:
& Flori & Orenga ‘98: a weakly viscous, compressible fluid interacting with
a plate clamped on its entire boundary.

3D fluid/3D structure or higher dimensions:
& Lions '69: a transmission problem for a fluid in an elastic container.
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A (short) survey of existence results

Cylindrical domains

3D fluid/3D structure or higher dimensions (continued):

& Du, Gunzburger et al. ‘03: mathematical analysis of a FSl problem where
the fluid is completely contained in a vessel with flexible walls.

& S. ‘07 similar problem as above, but for a fluid through an elastic tube;
nonstandard BCs involving the fluid pressure.

Time moving domains

1D fluid/ 1D structure:

& Errate, Esteban & Maday ‘94 analysis of a very simple FSI problem. In
case of a noncylindrical domain the convective term in the fluid
equations is essential.

2D fluid/ 1D structure:
& Flori & Orenga '99: study of a compressible, irrotational fluid intferacting
with an elastic plate which occupies a portion of the fluid’s boundary.
& Beirao da Veiga '04: proof of a strong solution for the coupled FSI
problem (Navier-Stokes equations coupled wit an elastic beam model).
The technigue therein allows to consider the Eulerian and the Lagrangean
descriptions simultaneously; the change of variables is done all through
the analysis (similarly to the numerical ALE approach).
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A (short) survey of existence results

Time moving domains (confinued)

3D fluid/2D structure:

& Chambolle, Desjardins et al. ‘04: a FSI problem where the fluid is
confained in a box with an elasfic cover having the rest of the boundaries
rigid and fixed: existence of a weak solution.

& S. '04: a similar problem as above, but with inflow and outflow sections
for the fluid and with nonstandard boundary condifions involving the
pressure.

& S. '04: study of a fluid inside a flexible cylindrical fube (Navier-Stokes
equations for the fluid, cylindrical shell equations for the elastic structure):
existence of a weak solution.
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A result in the stafionary case: problem setfing

The steady-state flow of a Stokes fluid moving in an elastic tube with thickness:
problem setting

Cp = {(z1,22,23) € R? : 22 + 22 < r?} is the infinite cylindrical pipe occupied
by the viscous, incompressible fluid

Cs = {(z1,22,23) € R® : 72 < 27 + 22 < r2} is the initial configuration of the
elasfic structure.,

Tpo = {(z1,22,23) € R® : 22 + 22 = r?} is the fluid-structure interface.

o is the exterior boundary of the elastic tube wall.
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A resulf in the stafionary case: problem setting

P()(x) = x +1(x) (deformation of the fluid-structure interface).

#(11)(C) denotes the current (deformed) fluid domain.

Equations for the elastic structure:

—div(\trace e(u)I 4 2ue(u)) = ginCy
(Mrace e(u)I + 2pe(u)) -n = GonTy,,
u = o0onTy
2w, .~
u(zi,z2,z3) = u(zy,z2,z3+ —) INCs,

a

with a € R% consfant, a << 2w. A > 0, u > 0 are the Lamé constants and
e(u) = %(Vu + Vutl) is Green’s strain tensor for the elastic material.

G := —o¢ - nis the surfacic force applied by the fluid on the inferface

of := —p? - I+ 2ve(v?) is the fluid stress tensor, and

e(v?) := 1 (Vv? + (Vv?)!) is the fluid strain (to be written in the reference
configuration, i.e. in the undeformed fluid domain).

Prague, November ‘07 — p.34/10;



A resulf in the stationary case: from Euler fo Lagrange

Equations for the fluid flow:

—vAV? +Vp? = £%in (@)(Cy)

divv? = 0in (@) (Cy)

v = 0on (@) (L),
V() = vi(eramas+m), x=(v1,22,23) € B(E)(Cy).

a

Problem: fluid equations set in Eulerian formulation, the elastic structure in
Lagrangean description ~- transformation, in order to get a unitary description!

We transform the unknown domain ¢(i)(C}) info C (which we know). We
define

~

¢(u) := Id + L(trace s, (1)),

where Id is the identity, frace s, is the frace operoTor overT';,and £: Ty, — Cy
is a linear, continuous liffing. Denote x? = P()(x), x € C.
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A resulf in the stationary case: from Euler fo Lagrange

With the following transformations:

p?(x?) = p?(Pp(@)(x)) = p(x)., v (x?) = v®(P(i1)(x)) =: v(x)

; _ _cofve(a)n

and n¢ — : dgcg — COfV~ lldo
|cofv(i)-n|| | @(u)||

M := cofV¢ (cofactor matrix), N := (V) ! . cofVe,

the fluid system becomes (when written in the reference configuration):

—vdiv (NV)v) + (MV)p = finCy
div(M'v) = 0inCy
v = 0onTy,
2 ~
v(x) = V(:El,ZEQ,:Eg—i——ﬂ-)in Cy.
a

Keep in mind that the functions above are related to the (initial) displacement 4, |
however we omit it in the writing. Prague, November ‘07 - p.36/10:



A result in the stationary case: from cylinder to forus

Let T be a torus in R3. We transform the cylinders
Cy:={(z1,z2,23) ER’ : 0 < a3 < 27”, r9 + 23 < r?} and
Cs :={(z1,22,23) ER3 : 0 < a3 < 2E, r? <a? 422 <r3}
(having the interface I'y, := {(z1,22,23) € R : 0 <3 < 25, 27 + 23 =r{})
into the tori Ty, respectively T, upon identifying:
® the disk {z3 =0, 2% + z2 < r#} with the disk {z3 = 2777, 9 + x5 < r?}
® {z3 =0, r? <a% 4235 <r3} with {z3 = %TW’ re < z?+ 3 <ri}.

We consider the mapping [0, L] 2 s+ d(s) = ¢, d(s) = 228, Vs € [0, L], where we
take L = 27,

Then the mapping transforming the cylinder Cyl = C'r U Cs info the forus is of the
form:

t:CylCc R®> - T CR?

t1(x) = (é + x1) cos(axs); ta(x) = (é + x1) sin(axs3), t3(z) = 2.
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A result in the stationary case: from cylinder to forus

Then the fluid system is equivalent to

—vdiv (N(@)y! - V)v(@)-~)  +
_|_
M@@)y' Vv =

v(in) =

where M()(X) := cof (v - Vo(ua(X))),

v(N (@) - V)v(@) - div !
(M(@)y! - V)p(a) = £7 (@) in Ty
0in Tf

0 on dTY,

N(@)(X) := (v/ - V() ' - cof (v/ - Vo(n)) , and

vl (%) = 2% (x),4,5 = 1,2,3 (we make the notation t(x) = X and

v (X) =) 0t 71X,

We also have

£7(0)(X) = (£(@) ot )(X)J((v/ V)p(a(X)));
v@)(X) = (v(@)ot ) (X);
p(@)(X) = (p(a)ot 1) (X).
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A result in the stationary case: from cylinder to forus

Analogously, tThe elastic stfructure system is equivalent to:

—div MrE(~® - (VU(@))Y) - I+ 2uE(~* - (VU(@)Y)) = K(H5)"1. ginTs
AMrE(R® - (VU@)) -1+ 2uE(v* - (VU(@))-n = KGonTy,
U(a) = o0onTy,

where K := A + pand E(y* - VU?) := 2(y° - VU! + (% - VU?)?!),

['yg denotes the exterior boundary surface of the elastic forus.

Observe that G (i1) = p(i)M(i1) - n — v(N()y/ V)v(il) - n

Here we make the same convention of notation as on the previous slide, where

Ot ;
L (x), jm=1,2,3

Lm

Tmj (%) = (

and
g(X) = (got )(X), G(X)=(Got™")(X).
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A resulf in the stafionary case: the fluid problem

Let p € R with 3 < p < oo. Consider the following system:

—vdiv (Ny - V)v-~) + v(WNA7 - V)v-divy/
+ M~yf - Vp=f in Ty
M~Fivv o = 0 in T
v = 0 onoaTy,

along with the hypotheses:

(H1) N isasymmetric and positive definite matrix such that
coeff (N) € WLP(T}), v/ is a regular enough matrix;
also assume that 3¢ > 0 a constant such that N'~f > cI;

(H2) Misinvertible in WhP(T) and 3 © with M = cof VO
(H3) 3 C > 0aconstant with ||T —N7f||wl,p<Tf) < C,
1T — (M’Yf)tﬂwl’p(Tf) < cand||I- M’YwaLp(Tf) <C.

TheoremF. Let f ¢ LP(Ty). There exists a unique solution (v, p) of the above
system in (W22 (T;) N Wé’ng (Ty)) x WEP(Ty), with:

IVllwz2.p ;) +lIPllwier,) < CleHLP(Tf)-
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A resulf in the stafionary case: the fluid problem

Sketch of the proof:

The existence of a unique solution (v, p) € H} Iy, (T¢) x L3(Ty) to the fluid

system above follows in the usual way. For the existence of a unique
pressure verify an adequate inf-sup condition:

fT T M~ Vap
Jk > 0 (constant) s.t.  sup !
PeH(Ty) H"PHH(l)(Tf)

> klirllL2ory ) ¥ € L3(Ty).

Indeed, vV r € L2(Ty) 34 € HL(Ty) s.t. div e = 7 and WHHl(Tf) <ClIrllzzr,):
Associate to any given r € L3(Ty) a ) and take 4 s.t. Vip = (M~F) "tV

Then ¢ € H}(T+) and we can use the above estimate for prH to deduce the
inf-sup condition with the constant k depending on [|(M~/) ~*{|es (7).

We prove the stated regularity upon constructing a Cauchy sequence of
solufions to the fluid system above and showing that it converges fo the
unigue solution.

The estimations obtained in the previous step allow to verify the inequality

stated in the Theorem.
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A resulf in the stafionary case: the fluid problem

Consider the sequence S(n) :

—vdiv(Vv™ - f) vV dived VT = — wdiv((T - NAH)V)vr ) L))
+ v(A=NAHV)v* T divy! + (I - My ) VPt in Ty
I:Vv" = (I-M~)):vv" 1 inTy
v = 0 onTly,,

with the first term S(0) :

—vdiv(Vv? -4 oyl dival +Vp° = f inTy
dvvv® = 0 inTy
vl = 0 only,.

3! solution v0 € W22 (Ty), p® € WhLP(Ty).

Moreover, ¥ n € N, (v, p™) € (W2P(T;) N WP (T)) x Whe(Ty), by
mathematical induction on n.
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A resulf in the stafionary case: the fluid problem

(v™, p™) is a Cauchy sequence in W2 (1) x WhP (Ty):
Calculate S(n+ 1) — S(n) :
—vdiv(V (vt — vn) o) 4 oV (vt — v div 4 4+ V(pn Tl — pn)

= —vAV((T = Ny ) V) (v = v ) ) (T = N ) V) (v — v )dliv v

+ (A= MA)V)E" —p" ) InTy
div(v*Tl —v?) = I-M~)): V" —v*" Y in T

vitl vy = 0 onT'gg.

For this Stokes problem we get the estimates

an—+—1 n—+1

_VnHWQaP(T ) |lp _anWLP(T )
f f

+
< const {|[I - N’YfHWl,p(Tf)HVn - Vn_1||w2,p(Tf)
+  |I- (M’Yf)tle,p(Tf)HVn - Vn_1||w2ap(Tf)

+ HI—M’Ywal,p(Tf)Hpn —pn_lﬂwl,p(Tf)},

const > 0 being a constant independent on n, N/, M, but depending on the

bound of ~7.
Prague, November ‘07 — p.43/10;



A resulf in the stafionary case: the fluid problem

Now choose C'in the hypotheses we made in order to satisfy const - C' < 1; it

follows that:

n—+1 n—+1

1A% —Vn||w2ap(Tf) + [lp _anWl,P(Tf)

< Cproafllv"™ — Vn_l”wlp(Tf) + [|p" _pn_l‘lwl’P(Tf)}a
WIth 0 < Cproq < 1.

Consequently, the sequence (v™, p™) converges in WP (Ty) x W1P(Ty). Thus,
there exists the limit (v, po) € (W2P(T) N Wé’p(Tf)) x WHP(Ty) such that

v" — vo in W2P(T) asn — oo

and . )
p" — pc INWHP(Ty) asn — oo.

By passing now fo the limit in S(n), we conclude that (v¢, pe) is the unique
solution of our system and thusvs = v and po = p.

With the above estimations we can write
V™ llwe2.e ;) + IP" lwie(r,) < CHfHLP(Tf) + Cprod{HVn_lelp(Tf) + Hp”‘l\lwl,wf)},

thus for n — oo we geT HVHWQ,p(Tf) + Hprl,p(Tf) S C(l — CPTOd)_Plrch:‘JLI,NB\(&fde'r 07 - p.44/10



A result in the statfionary case: the sfructure problem

Consider the following system for the flexible structure:

—div( MrE(~® - VUY) - T+ 2uE(v®-VUY)) = KH%"'g inT;s
(MrE(v*-VU") - I+ 2uE(r°-VU"))-n = KG onTyy
U = 0 onlIy,

where g is a given volumic force and G is a given surfacic force (related to the
fluid stress tensor).

Theorem S.Forp € R, 3 < p < oo let g € LP(Ts) and G € W1—1/»P(T'4,). Then
there exists a unique solution U € W2P(Ts) N W(} ’f?o (Ts) of the above system and
it satisfies:

Ul w201,y < const (||gllrr(T,) + HGle—l/p,p(Ffs))'
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A result in the statfionary case: the sfructure problem

For the proof we can write the system in the form

A(U,9) =L(¥), Vo eV,

where
AUY) = [ SU) BV,
with
S(U) := MrE(v® - VUYI + 2uE(y* - VUY)
and

L(2)) ::/T Kg - 1dy + . KG - do.
s fs

Denote V := {¢ € H'(Ts) : p =00nTo} = Hj p (Ts).

A is a continuous, bilinear form that is also V-elliptic (via Korn’s inequality) and L
is a continuous linear form defined on V. The existence of a unique solution
follows by the Lax-Milgam lemma. For U € W?2:?(Ts) and the estimate in the
Theorem apply Th. 6.3.6 in Ciarlet ‘86 and the remarks after it.
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A resulf in the stafionary case: the coupled problem

Theorem. Let p € R with 3 < p < oo, ¢ € LP(R3?)and g € LP(Ts). Assume there
exists a constant x > 0 with:

Ccoupl(“fd)HLp(RB) + ||g||LP(TS)> < X.

Then there exists a solufion (v, p, U) of the coupled problem on the torus
T =TfUTs, withv e WHP(Ty) N Wol’p(Tf), p € WHP(T) and U sufficiently small
in W2:P(Ty).

ldea of the proof: let
Uy = {0 € WHP(Ty) : |lallw2.p(r,) < x}-

The mapping
Uy, > 2 U@) € W2P(Ty)

has at least one fixed point.
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A resulf in the stafionary case: the coupled problem

Let @ € U,.. Then V(i) is an invertible matrix in WP (T;) (p > 3) and (for x
sufficiently small) we have detV (i) (x) > 0, thus the deformation ¢ (i) = Id +
is orientafion preserving and injective.

Indeed, by the mean value theorem:

lp(T(x1) — p(T(x2)|| = [[x1 —x2+ G(x1) — G(x2)||
> ||x1 — x2|| —sup||Va|[ - [|x1 — x2]|

> (1 =C(Ty))l[x1 —x2f| (for x1 # x2),
C(Ty) being the constant in the orientation preserving theorem.

The solution (v(1), p(11)) of the actual fluid equations safisfies the same type of
equations as those in Theorem F for the similar Stokes system, with f := £/,
N =N (1), M := M(1).

Due to the smoothness of v/, the hypotheses of Theorem F are satisfied for N (i1)
and M(a), too. Thus VvV @ € Uy, (v(i),p()) € W2P(Ty) x WHP(T}) and

V@) llwez.e ) + Ilp@llwie ) < CLlf (@) Lery),

thus also _ _ 3
V(@)llwze iy + IP@wier, < CCLXIE? L (r3)-
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A resulf in the stafionary case: the coupled problem

Now G (@) = p(Q)M(@1) - n — v(N (@) V)v(1) -n € WI=L/PP(T ).

G in the right hand side of the structure equations for U (previous slides) safisfies:

IGlwi-1/pp@,,y = CUV@lw2e ) + IP@lwirr,))

< CCLX)IE? | ze).

Now apply Theorem S to get the existence of a unique solution U(i1) € W2 (T%)
tfo the actual structure equations with

U@ lw2.p(1,) < const(C(CL)IENIe + llglle(z.))-

We have thus constructed the mapping U/, > u A U(a) € Uy, C W2P(Ty).
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A resulf in the stafionary case: the coupled problem

The mapping A has a fixed point, by the theorem of Schauder:

®  Ais weakly sequentially continuous on W27 (T%).

® AUy C Uy,

® U, is convex and weakly compact in W2 (Ty).
Indeed, let 1, € U, with @1, "= @ in W2P(Ty).

By the previous estimates, (v(uy,), p(ty,), U(qy,)) is (independently on n)
bounded in W2P(T) x WhP(Ty) x W#P(Ts), thus
J(v,p,U) € W2P(Tp) x WHP(Ty) x W2P(Ts) and 3 (Tipg)r C (TGn)n with

k—oco . .

V(flnk) — vin Wz’p(Tf)

- k— o
p(ling)  — pin WHP(Ty)

U(fing) "= Uin W2P(Ty).

Show that U(ua) = U and this will prove the weak continuity of A, since then
U(i,) — U(11) in the weak topology of W27 (T).
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A resulf in the stafionary case: the coupled problem

Remember that the exstence of a fixed point for A ensures the existence of a
solution to the coupled problem on the forus.

Now fransforming back to the original domain, we get the following result for the
fluid-structure interaction problem in the cylinder of length L = 2777:

Theorem. Let £¢ ¢ L?(R?)and g € LY. ,.(Cs). Assume there exists a constant
x1 > 0 with:

K([£% e r3y + lgllLe o)) < x1,

where K is a constant depending on a.

Then there exists a solufion (v, p, U) of the coupled FSI problem, with
v e WL (CH)NW, p e Wy (Cy) and U sufficiently small in W22.(Cs).
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A resulf in the stafionary case: some function spaces

Let C an infinite cylindrical pipe with boundary T. For a € R4 — {0} and the finite
cylinder C with boundary I', define

C0%er(C) = {feCH.(C) : supp (f) N (C —T)is compactin Cy},
LP..(C) = theclosure of C 7. .(C)in LP(C)
WoeX(C) = theclosure of C 2. (C) in W™P(C),
Wy e (C) = the closure of CF7,.,.(C) In W™ (C),
W = {F€CE..(C): V- F=0}
W = the closure of W in I, ,’ger(C).
Observe that
_{VEW,per(C) : V-v =0}

By the Poincaré inequality, the inner product in WO
inner product

(C) is equivalent fo the

,PET

((v,w)) := ZZZ 88:3 dx, v,we W, ,’567,(0).
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A result in the tfime-dependent case (cylind. domain)

Totaldomain: © = QU Q. Qp := Sy x (0,L), Qs :=Ss x (0, L), where
Sy =: {(acosb,asinf):a € (0,7), 8 € (0,7)}
Ss =: {(acosB,asinh):a € (r,R), 0 € (0,7)} r < R,
Boundaries:
¢ T'ss: the fluid-structure interface,
® T¢ends,k (k= 1,2): the fluid boundaries at the ends of the tube,
¢ T'..:: the exterior lateral boundary of the elastic cylinder,

® TDgends = s ends.1 UTs ends 2t boundaries of the elastic cylinder at the
fube’s ends,

© Tpor =T £.0ot UL's 1ot O€ the bottom part of the boundary. Prague, November ‘07 - p.53/101



Stokes flow through an elastic tube: the equations

The elastic structure:

Orru — AV (divu) — 2uV - e(u)

u(0)

The fluid:
v —vAv + Vp
div v
vV X n

Vv

g~

v (0

N—

The coupling:

(Afrace e(u)I + 2ue(u)) - ng
oru

gin (0,T) x €
0 on (0, T) X (Fext U Fs,ends U Fs,bot)
0, 8:u(0) = ugr in Qs

fin (0,7) x Qf

0in (0,T) x Q¢

00N (0,T) X 't enas
0on (0,T) X T'¢ pot

00N (0,T) X '¢ ends,2
P(t)on (0, T) X I'f ends,1

vo in Qf,

p-ng—v(Vxv)xngon (0,T) x g

von (0,T) x I'¢s.
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Function spaces, notations, and assumptions

V —{LPED( ) dive =0in Qf, exXn=00n Ff ends, @ = 00N FethFs,endsUFbot}

L2(Q < H1 Q
H(Q) V( ( ) ( )f ) V(Q) ( ) H F = HO Fea:tUFs endSUFS ,bot <QS)

Vf = {V c Hl(Qf) . divv=0in Qf, v Xn=0o0n Ff,endsa v =00n Ff,bot}-

Denote by (&, ) ¢ s the L2-inner product

(& P)ps = (& Pa; + (& ., V& e e L2(Q).

The norm in L2(Q) is equivalent to the norm generated by this inner product.

Assume g € L2(0,7;L*(Qs)). £ € L?(0,T;L*(Qy)) and
P e LQ(O,T; LQ(Ff,ends,l))l Vo € Vf, upl € HS”% with vg = ug; on Ffs-

Compatibility condition: fF v3 — frf L, U3 +frf v-n=0.

,ends,2

One can prove that

FCeury >0 @ Vv € L2(07T§ Vf)a |V X VH%Q(QJC) > CcurlHVH%_Il(Qf)-
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The weak formulation

3 Up € L2(0,T; Vy) s.t.

divUpy = 0in(0,7) x Q¢
Ug = 00n(0,7T) X T¢por
Upgxn = 00n(0,T)xXTI¢ends-

Problem 1: Find (u,v) € L*(0, T; H 1) x L?(0,T; H'(Qy)) such that
v — Ug € L? (O,T;Vf),

d

(0, @), + (v, 9)a,) + alu, @) + 1Y XV, V x @),

= (g, p)a, + (f,p)a, + / P(t)ps, Ve € V(Q),
Ff,e"n,ds,l
where

a(u, ) = A(div u,div @)o, + 2u(e(u), e(¢))a.

u(0) =0, 0u(0) = up1, v(0) = vg ond/ (s)ds =u(t) a.e.ton T ;.

Prague, November ‘07 — p.56/10;



An equivalent problem and the existence resulf

Notations: W = atUXQS —|—VXQf, WO = U1XQ, —|—VOXQf, G .= gXQ, —I—fXQf .
Problem 2: Find w such that v — Uy € L?(0,7; V) and

t
< Buw, @ > 1,5 Fal [ w(s)ds,9) + v(V x w, ¥ x @),
0

— (@Ot [ Ples e e V() e te 1)

1—‘f,e"n,ds,l

w(0) = wp IN V' (Q),
t t
/w(s)xgsds = /w(s)ngds onT¢,, Q.e.t,
0 0

where V' () is the dual space of V(2) and < .,. > , is the duality pairing
between V/(Q2) and V (£2), that is generated from the inner product (.,.) ¢ s.

Theorem 1. There exists a unique weak solution of our fluid-elastic structure
coupling problem.
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Sketfch of the proof

¢ Galerkin approximations, existence of a unique approximate solution w;,,

¢ Energy estimates:

Proposition 1. There exists a constant C' > 0 such that

t

2 2 2 I 2
Ogltlng (me(t)Hf,s + || O/Wm(S)dSHHl(QS)) + ||wm||L2(O,T;H1(Qf)) + ||wm||L2(O,T;V’(Q))

< C(HG”%F(O,T;L?(Q)) + ||P||i2(07T5L2(Ff,ends,1)) T HuOlH%{l(Qs)) T HVOH%{l(Qf))'

The constant C' depends on the fixed T' > 0, on C..,,-;. v And on the constants
Ctrace ANA Ck oy, IN the inequalities (with ¢ in the corresponding spaces):

ICllz2(r; o) S CtracellCllai (o, (Sobolev embeddings)

1<131 () < Crornal(,€) (with Kom's inequality).

¢ Passing to the limit and uniqueness proof.
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Galerkin approximations

Consider the funcfions w, = wy(x) (k = 1,2, ...) s.t. {wy } is a basis of V().

Take {w} }, o be the complete set of eigenfunctions of the eigenvalue problem

weV(Q) : (VW, V) s =a(w,p)fs, Yo € V().

Assume {w; };—1 o... is orthonormalized with the Hg,P -inner product (V.,V.) ¢ ;.
{wy, } is orthogonal w.rt. the L2-inner product (., .) ¢ s.

™m

wm(t) == cpm(t)wr, meN (fixed).
k=1

with Ckm(t) O<t<T,k=1,...,m)s.t (wm(O),Wk)f’S = (wo,Wk)f’S.
t

(Dewm(t),Wi)rs + a(/ Wi (5)ds, Wi) + V(Y X Wi (1), V X wr)a,
0

= (G(t),wi) s + / P(t)wp 5.

Pf,ends,l

The compatibility condition is obviously satisfied:

¢ t
/wm(s)xgsds = /wm(s)ngds onTl'ys, a.e.t.
0 0
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Galerkin approximations

Denote the right-nand side in the Galerkin approximations by Fi (t) and observe
that the above system can be written in the form of a linear ODE system of first

t
order for ¢y, (t) and for dy,,, (t) := [ cpm (s)ds :
0

Z Wi, WE) £.5Cm (1) —I—I/Z (V x w;, V X Wk)chlm t) —I—Za Wi, Wi )dim (t) = Fi (1),
=1 =1 =1

with
gm(t) — Clm(t), [ = 1,. o, Mm

and with the initial conditions

m
> (Wi, W) fsm(0) = (wo, Wk,
=1

dim(0) = 0,1=1,...,m.

This leads to the existence of a unique solution w,,, t0 the previous approximating
system.
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Sfrong energy estimates

Theorem 2. Let g, f, P, vo and ug; as before and assume

g € L?(0,T;L%(Qy)), £ € L2(0, T; L2 (Qy)), P’ € L?(0,T; L* (T, ends,1));
vo € H*(Qp) withvo x n =00Nn T cpas, u1 € H*(Qy), P(0) € L*(Tf ends.1)-

Also assume 3 pg € H'(2¢) such that
Po - Ny —I/(V X Vo) XNy = 0 on (O,T) X Ffs-

Then the following estimate holds:

||V/(t)||i2(gf) + ||U-H(t)||%,2(gs) + ”V/Hi2(0aT3Hé,rf . t(Qf)) + Hul(t)H%—Il(Qs)
cCT 2 2 2
< CeT (G 13 0,mn200) + 1P 1320,1302(0 s o1 + IV0lRe2 (0

+lpollZ1 g, + 101 I35 g )

Moreover, for U, € L?(0,T; V¢), v safisfies div v = 0 in the sense of distributions in
Q) and the boundary conditions on v in the sense of traces of functions of
L?(0, T; H' ().
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Existence of a pressure

Theorem 3. Assume V - f € L%(0,T;L?(€2¢)). Then in the hypotheses of Theorem 2
there exists a class of functions p € H(A,Qf)/R such that

otv—VvAv+Vp=1~f

is satisfied in the sense of distributfions in 2 ¢.
Moreover, for V x f € L?(0,T;L?(Q2¢)) we have V x v € L%(0, T; H(A, Qy)).

Here
H(A,Qp) :={q€ L*(Qy) : Aqe€ L*(Qy)}.

andp € H(A,Qf)/R means that p € H(A,Qf) and it is unigue up to an additive
constant.

What about a Navier-Stokes fluid in a time-dependent domain?
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A result in the fime-dependent case (noncyl. domain)

Qs = (0,L) x (0,1), no given initial displacement

Qny  =A(z1,22,23) € R3: (r1,x2) € Qs,
0<x3 <14+ no(x,zo)} (initial state)

Qn(t) ={(z1,22,73) € R’ (21, z2) € Qs,

r
f,1

0<xz3 <1l+n(txz,z)} (aftimet)

Boundaries:

I'r1.1¢ 2 are the inflow, respectively the outflow boundaries.
Mo I'y is the (fixed) bottom boundary of the fluid-filled box.
Lsides = I front U l'pacr, Are the side boundaries

of the fluid domain (fixed).

[ ¢4 is the time moving fluid-structure interface.

0[(0, L) x (0,1) x {1}] is the (clamped) boundary

of the elastic plate.

Aim: does a solution of the coupled problem exist?
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The equations

For the elastic plate (only fransversal displacement):

Oun + A%n + yAZ9n
n=0nn
n(0)

g+ Gin (0,T) x Qs
0on (0,7) x 99
no, 0:n(0) = no1 iN s,

where G:=(Fy)3 and F ¢ is the force applied by the fluid on the structure.

For the fluid:

otu —vAu+ (u-V)u+ Vp
div u

uxn

u

p
u(0)

finQ,r

0iNQy.T

oon (0,7) x I'¢

00on (0,T) x (I'y UTs;qes)
poi ON (0,T) x 'y ; (1 =1,2)

where Q,, + C R*isdefined as Q,, 1+ := Uy, {t} x ().
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The coupling

Equality of velocities at the interface:

U(t,ZIZl,CCQ, 1+ 77(75,$1>f’32)) — (0707({%77(7573317:62))7 (CUl,ZIZQ) € QS'

/ 87577—/ ul—i—/ up = 0.
Q) I I

s f1 f2

Compatibility condition:

The surface force exerted by the fluid on the elastic wall:

/ Ff-ff:/ (—v(V xXu) Xng+p-ng)-v, Vv,
Qs 8Qn(t)_(FfUFbUFsides>

where v(t,z1,x2) = v(t,x1,22,1 +n(t,x1,x2)), V(z1,22) € Qs
n; is the unit outer normal at I' () := 0O, (t) — (I'y UL, Ugi4e5)-

Observe that

AT () = \/1 + (9, m)? + (Drym)2dar dea.
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A priori estimates

Proposition 1. Assume that ug € L2(2y,,). no1 € L?(2s). no € HE(2s),
f € L2(0,T;L%(R3)), po € L?(0,T; L?(T'y)) and g € L?(0,T; L?(Qs)).
Then an a priori estimate holds, so that one gefts

u € L>(0,T; L% (Q, (1)) NL*(0, T; H' (2, (1))

and
n € Whoo(0,T; L2 () N H (0, T3 H3 () N L (0, T; HE ().

Proof: use the Reynolds fransport formula, the usual Sobolev embeddings, Gronwall’s
inequality and the following ellipficity condition:

dcg >08fLYueV |V x u(t)\iQ(BK) > cEHu(t)HiIl(BK),
where Bi := Qs x (0, K) and
V = {velL?0,T;H'(Bgk)) : divv=0,v=00n(0,T) x (Ty UTgiges),

vxn=00n(0,T)xT¢}
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Some fools: function spaces

Llet T > 0,6 € H(0,T; H2(Q.)); take K > 1+ 6(t, 21, 22) > a > 0in[0,T] x Q.

Forevery t € [0,T], Q5(t) C Br. Define Bi 1 := (0,7") x Bg.
As usual, L9(Q5(t)), H' (Q5(t)) (V). LY(Qs,7), H (Qs,1). LY(Bxk,r). H' (Bx,T),; ---

L?(0,T;H" (Qs(t)) = {veL?*Qsr): VveL*(Qsr)},
——L2(0,7;H (25 (1))

D(Q5,T) ’

L*(0, T3 Hg(25(1)))

Vs = {veC'Qsr) : divv=0,v=00n(0,T) x (Ty UTs4es),
vxn=00n(0,T) xT¢},

L7 (0, T;H (25(1)))

Vs = Vs )
L>®(0,T;L*(Qs(t)) = {veL*Qsr) : sup €St VllL2 ;1)) < o0}
Vs = {veL?0,T;H (Qs(t))) : divv=0, v=00n(0,7) X (T UTs;des),

vxn=00n(0,T) xI'¢}.
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Further tools: some lemmas

Consider the mapping C°(Q5(t)) > v K v(t,z1,22,1+ 6(t,x1,22)).

Lemma 1. (frace on 95 (t) — (I'y U T'siqes UL 1))

For every t € [0,T], the mapping ;) : C*(Bk) (respectively C!(Qs(1)))
— CY%(Qs) can be extended by continuity to a mapping from H! (B )
(respectively H' (Q5(t))) into L?(Qs).

Lemma 2. For every t € [0, T], there exists a linear continuous operator
75, + Hcurl, 5(1)) — H~(2,) such that

7:;?15) (V) = V(t,xl,CUQ, 1+ 5(t,$1,3§‘2)) X Ng, v(ﬂi’l,ﬂ?g) c Qs,

forall v € C>~(Q4(t)), where

H(curl, Qs(t)) := {v € L%(Qs(t)) : curl v € L?(Q5(¢))}.
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Further tools: some lemmas

Lemma 3. For every t € [0, T}, there exists a linear continuous operator
V(e  H(div, Q5(t)) — H~1(Q) such that

75”(15) (V) — V(t,$1,$2, 1 + 5(t,$1,$2)) . 8 V(xl,xg) € QS,
for all v e C>(Qs(t)), where

H(div, Q5(t)) := {v € L*(Qs(t)) : divv € L?(Qs(t))}.

Lemma 4.

{v € H(l),FbUFsidesUH(t)(Q‘S(t)) cvxn=00nTIy}

={veHr,or,,,.. Q) : 1) (v) =0, vxn=00nT}.

Lemma 5. Let v € Vs st fora.e. t, y5.4) (v) = (0,0,b), with b € L2(0,T; Hj (Qs)).
Then define the function

. v in Qs
VvV =
(07 07 b) in BK,T — Q6,T

v belongs to V and ||v||v < C(]|v]|v, + ||b||L2<0,T;H5(QS)))-
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Weak formulation

Definifion. (u, n) is a weak solution of the coupled problem (on [0, T)) if:
® ucV,NL>®(0,T;L*(Q(t))), n € WH(0,T; L*(Qs)) N H' (0, T; H5 (S2s))
® Yp(a) = (0,0,0:n) fora.e. t
¢ forall (¢,b) € V, x CH(0,T; HZ(Qs)) S.1.
P(t,x1, 2,1 +n(t,x1,22)) = (0,0,b(t,x1,x2)), (t,x1,22) € [0,T] X Qs

we have for a.e. t

/Qn(t)U(t)-Mt)O/t/gn(s)u.at«pjtuo/t/gn(s)(vXu).(vx¢)+0/t/%(s)(u.v)u Wb

// 8tn8tb+/ o (t) // AnAb—// 81;77)2b—|—fy// AdinAb
t t t
ZO//QH(S)f-¢+O//QSg-b—O//Ffpo-n-¢+/ﬂn

1J10'1P(0)+/Q 1n01b(0).

0
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The main result

Let no € HZ(Qs), up € L2(Qy,). po € L2(0,T; HY/2(T'4)), no1 € L?(Qs) s.,
minQS(l +10) >0,divug =0,ug =00Nn T, UTl44es, up X n =0 0N Iy

o (W0) = (0,0,m01) -mo ON Qs [ o1 — Jp , ur(0) + Jp | u1(0) = 0.

THEOREM. Let f € L2(0,T;L2(R3)), g € L?(0,T; L?(Qs)).
Then there exists T' > 0 and a weak solution of the problem on [0, T, which safisfies
the following estimates:

[aflpe (0,72 (0, (1)) + 11allLz 0,711 (@, (0))) FOenl Loo (0,7:22 (0 )) + AN 10, 7:22(04))
< const (T, HUOHL2(Q”O)> HfHL2(O,T;L2(R3))> HpOHL2(O,T;L2(Pf))7

H9HL2(O,T;L2(QS))a HUOHHg(QS)a ’\7701”1:2(98))-
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Idea of the proof

State an approximate problem, whose solutions are built by regularizing
the convection velocities.

Apply Schauder’s Second Fixed-Point Theorem to show the existence of a
solution for the approximate problem.

Prove some compactness results.

Pass to the limit in the approximate problem.
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Remark. (rewrifing the convective term)

/Qw)(u'v)u'q’b:/fzn(t)(v o UMH%/Q

Let u§, ng. nG; e regularizations of the initial data s.t.

(am)%—% /

Tf

1
uihr + = / Ui,
2 T tg

S

¢ divu§ =0,

® uf(z1,z2,1+n§(z1,22)) = (0,0,n5; (x1,x2)) in Qs,
® uf=00NT, Ulg4es, u§ xn=00NnTy,

fQS o1 — frfl ug 1+ frf2 ug 1 =0

° Xq,, uf = XQ,, uo iN L*(Bk)

® g, = o1 in L2(Q) and ns = no in H2(Qs).

Using these regularizations, construct a sequence (ue,n¢)>o Of approximate weak
solutions.
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The approximarte problem

Proposition 2. Let ﬁE and 775 e regularizations of ., respectively n.. Then there exists
(Ue,me)€ (VnE N L (0,T; L2(Qn§ (£)))) x (W1oo(0,T; L*(Qs)) N HY(0,T; H3(2s)))

® uc(t,r1,12,1+ ng(t,xl,xg)) = (0,0, 0t (t, x1,22)) ON N5,

® Opuc € L2(0, T L2(Q ¢ (1)), Oseme € L2(0,T5 L2(Qs)),

® ue(0) = uf, 7e(0) = ng. 9ne(0) = ng; and
t

t t
J Ja (s)atu€'¢e+yffg (S)(que)-(VX¢€)+fo (8)(V><ﬁﬂ)><ue-¢e
0" nt 0" nt 0"l

t t t t
1 ({frﬂ e, GE et + 3 g‘frﬂ Ue, 18 e, 12 “0”98 By Omth +g‘f98 Btmeb

t t t t t

"‘ffszs AneAb+y | fQS A(One) Ab= fo 4 (s) f-p.—[ [po-m: ’l/)d-ffgs g-b,
0 0 0 me 0T, 0

Vi €V 5, bE L2(0,7T; H3(2s)) such that

P (t,x1,x2,1 + ng(t,xl,xg)) = (0,0,b(t,x1,x2)) ON Q5.
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Idea of the proof for Proposition 2

Step 1.
linearize the weak formulation of the approximate problem

tfransform to the reference configuration and use the method of
Galerkin to show existence of a unique solution to the linearized
approximate problem

Step 2: apply Schauder’s Generalized Fixed Point Theorem to show
existence of a weak solution (ue,n¢) To the approximate problem
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The approximate and linearized problem

Let6 € H'(0,T; H5(2)). 6(0) =n§ and K > 1+ 6(t,z1,22) > a > 0,
V(t,x1,22) € [0,T] x Qs (ais such that ming (14 1n9) > 2 > 0).
Take v € L2(0, T; HY (Bak)).

Consider §¢ = R#(5) and v! = R/ (v) space-time regularizations of &,
respectively v, such that:

R3(8)|1—o = 1§ and 2K > 1+ 88 (¢, 21, x2) > % Y(t, 21, 22) € [0,T] x Qs.

R:(6¢) — 6InC([0,T] x Qs) when §. — §in C([0,T] x Qs),
Ot RE(8¢) — 06 in L2(0,T; L?(Qs)) when 8:6c — 9:6in L?(0,T; L*(s))

R (ve) — vin L2(0,T: HY (Byx)) when v, converges to v in L2(0, T; H! (Ba k).
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The approximate and linearized problem

Find (ue,ne) such that:

¢ ¢ ¢
1 1 1

__// /U’G,]_/UE’]_ '¢€,1+ _// 'LI/e,]_'UE’l .¢671—|—_//
2 o “Lr 2 o L2 2 o 7

t

S

0

V"-pe S V(;ﬂ )

t
—I—/ AneAb—i-ﬁ//
Q
0

Ue C© V(Sﬁ M LOO(OaTa L2(Q5ﬁ (t)))a

e W1e2(0,T; L2(Q,)) N HY(0, T HZ (),

Ue(t, 1, 22,1 + 8% (t, 21, 22)) = (0,0, 9¢ne (t, z1,22)) ON Qs

uc(0) = ug, 7¢(0) = ng, 9¢ne(0) = ng, and

' t
// Oue - 'L,b—i—u// (V xue) - (Vxa,) —i—// vaﬁ)XUe-'c,be
2 (S) j:t(S) 2 (S)

be L?(0,T; H3(Qs)) s.t.

'l,be(t,xl,QZQ, 1 + 52(t,$1,$2)) —

S

¢
8t7768t5£b+// OttNeb
Qs
0

t

t t
[ s@mose= [ [ tpe— [ [ ponewer [ [ g
Q4 Q 4 (s) r; Q4
0 d¢ 0 0

(0,0,b(t, z1,x2)) ON Qs Prague, Noverber 07 - p.77/10:



Iransforming to the reference configuration

We denote the reference configuration by R := Qs x (0, 1) and consider the
transformation

B (0,T) x R — Qs (1),

¢€(t,$1,$2,$3) = (33173727373(1 —|—5£(t,x1,x2))), v(x17$27x3) cR, te (OaT)

Observe that
¢. is smooth in space and time and
Orp, = (0,0, 230:5%).

Denofe
ufe i=uco @, YL i=1p 0P, £ :=fog, i :=poo e

M ‘n

Je 1= det Vo, M, = cof Vo, n®e .= _,
[Me - n|

do®c = ||Mc - nl||do
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Transforming fo the reference configuration

The equations become (ug“ (t, z1,x2,1) = (0,0, 0:ne(t, x1,x2)), (x1,22) € Qs):

t

t
//8tu‘f€¢f€J€+u/
0 R

0 R

t
+//(MV ) X vPel) x ufe . qpPe— //(&gqb (M V))ufe . p%e + // dtne Ot 6%b
0 R
1 t t t
—// ufguis vl - Jet o // ufguls? wfi-Je+// 3ttneb+// AneAb
2 ¢ I'fo ’ Qs Qs
0 0 0
t t t t
oy [ [ s@maav= [ [ w0 wgeae [ [ g [ pge g
o s o " o Ui o “hs

(R)),be L?(0, T HZ(s)) such that

V) x ube) (e

Pe
V) <)

Vaple € L2(0, T; HY 1 p

sides

'(,be (t,z1,x2,1) = (0,0,b(t, z1,x2)) ON Ny, div (Mi'c,bfe) =0in R, z,bfe xn=0onTg.
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The method of Galerkin

Build a basis {£)} -~ of the space
{(veH'(R) : divv=0inR, vxn=00nT;, v=00n9dR —T;}.
Denote v) := M. “£Y. The family {+/0} ;e is a basis of the space
{veHY(R) : div(Miv)=0inR, Mivxn=00nT;, v=00n9dR T}
and the functions ng? are smooth in fime, because M. it is.

Also consider a basis {p; | jcn and build functions (also smooth in fime)

{¥) }jen st div (M%) = 0and 9> (t, 21,22, 1) = (0,0, pj(z1, z2)) ON Qs.
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The method of Galerkin

Looking for n* := Zl Bi(t)p; +n§and ul<™ ™ = 3" «; (t)'zp(;’e + zz B (t)p)€
j= =1

such thatforall1 < 57 < m,

M
o o [ (M
/R J R Je

4 [ (M) xovged) scugemn g
R

2 T4y

:/ £Pe .qu’eJe—/
R J r

€

g=1

m,n M€
V) x ufem™m) - ((

0,e€

?76 N / (Ot - (Mev))ufe’m’” : Qp?ﬁ
R

1
__/ Z,)efmn Cbe:t%p?fq] + = / z)el,mn ¢€7ﬁ¢0 GJ

Tro

€ 0,
pg .n.,(/,je.(]

f
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The method of Galerkin

andforalll <1 <n

Me Me *, €
Brude ™" P T + V/ (==V) xuf=™") - (===V) x 9;")
/]‘_{ ! R ‘/']6 /J6 l

" /R<<Mew X VESE) X uge T /R<8tc/>6 (MeV))uge ™" -

1 m,n m,n
—g st ek g [ wtam ity [ omtostes [ ount
2 Tt 2 Ly

+/ A”?APHLV/ A(ﬁtn?)APzZ/ foe -¢7’€Je+/ g-pz—/ ple m- Pt L.
s Qs R Q I

S

Initial conditions:

B;(0) = 0, ug< ™™ (0) = uly™", where u?s™" is the projection of ug®< on

07 )
SPAN (Y, ;") 1<j<m,1<1<n AN

o (0) = ngy" . where ng;" is the projection of 15, on span (p;)1<;<,.
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The method of Galerkin

transformation

2nd order system of ODEs — 1st order ODEs system.

By the usual theory of ODEs, 3 T, », > 0 s.1. the system has a unique
solufion on [0, T, n].
Energy estimates (independent on m, n) = solution on [0, T']:

be,m

||uf€’m’n||LOO(o,T;L2(R)) + [V X uf ’n||L2(0,T;L2(R))

HOene | Lo (0,15 12(024)) T IIANE  L20,7;02(0,))
< const (TaluoHL2(QnO)7 & o, |[9llr200,7;220.)) EllL2 (0,712 (R3))

||p0||L2(O,T;L2(I‘f))’ HnOHHg(QS)’ H7701HL2(QS))-

Energy estimates (independent on ¢, «):

||u?1’n||L°°(O,T;L2(Q6ﬁ ) T 11V X u?%nHLQ(O,T;LQ(Qéﬁ(t)))+’|at77?|’LOO(O,T;H(%(QS))

+IANE [ L2 0,112 (0, )) < cONST (T>||u0||L2(Qn0)’ Hgll 20,7522 (0,))

HpOHL2(O,T;L2(Ff))7 HWOHH(%(QS)’ H7701HL2(QS)> |‘f|‘L2(0,T;L2(Eré@msl:l\lovember'07—p.83/1o:



The method of Galerkin

Lemma 6. There exists a constant C'(e, «) > 0 such that C does not depend on m,
n and

[10eug ™ ™ ||L2 0,72 () H10um? || 20,7 L2(020)) < €

The above estimates allow us o pass to the limifs in the linearized approximate
problem.

We have: V (v,d) with v € L2(0,T; H! (Bax)) and 6 € H'(0,T; H3(2s)).

K >1+6(tx1,22) > a >0,V (t,z1,22) € [0,T] x Q25 there exists a unique solution
(ue,ne) of the linearized approximate problem.

Observe that n. € H'(0,7T; H3(S2s)) and that 1. (0) = n§.

u. in Q 4 (t
Ue 1= 6‘5( ) S LQ(OaT; Hl(BQK))
(O, 0, &gne) N Bop — Qéﬁ (t)
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The fixed point theorem

We define the spaces
S :=L>(0, T; H' (B2 )) x H' (0, T; Hg (2s))

X:={(v,0)eS : ||[(v,d)|ls<Cx, a<1+(t,z1,22) < K,
V(t,x1,22) € [0,T] x Qs, 6(t =0) =ns}

and the mapping F Pe:
X 3 (v,9) L (e, me) € S.
For every € > 0, the mapping F P. has a fixed point. Indeed, we check the
hypothesis of the Second Schauder Fixed Point Theorem:
S is a reflexive, separable Banach space
X is nonempty, closed, bounded and convex
FP.(X)CX

FP.: X CS — Xiswedakly sequentially continuous
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The fixed point theorem
We know that;

(Gg ,ne )nen isbounded in S and a subsequence of (xq , ()drug,0un(’)
5n,e

converges weakly in L2(0, T; L2 (Bag ) x L2 (0, T; L?(Qs)).

Let ("u,7.) be the weak limit of (a”,n"). Show that (uc,7.) = FP.(v,).

Pass to the limit for n — oo in the weak formulation satisfied by (ul*,n):

t t t
[ amrwran [ [ xan) Oxwn s [ [ (Txvh ) xul g
ARALN (s) 2 Qafl 6(S) ) Q5EL 6(8)

5n,e

t t
1
s [ e // o // D oot b+// D™
20 I'¢1 I Qs
t t t t
+/ An”AbJrv// A(ﬁtn?)AbZ// f-¢?+// g-b—// po-n -y,
/) Ja Q. S oy () /) Ja S Jr;

vy €V, |, be L2(0,T; H2(9,)) such that
")b? (ta r1,r2,l + 5£L,e<t> I, xQ)) — (0, 0, b(t> x1, CUQ)) on 2. Prague, November ‘07 - p.86/10;



The fixed point theorem

Take ¥} € D(Q,; ) such that div ¢ = 0. Then (¢, 0) is admissible for n large

enough, since ¢ — § uniformly for n — oo, thus for large n’s the difference
between §™ and ¢ is very small.

Forb e L?(0,T; H5(Qs)) define

Loy ) (0,0,b)in Bag — QSE (t)
P (b) == { B(b) in Q4 (1)

Y

where B(b) is such that

divB(b) = 0,
B(b) xn = o0onTy,
B(b) = 0onTyUTgges
B(b) = (0,0,b)o0on 8955 (1) = (T Uy UTlgides)

Then (1 (b), b) is admissible for all n.
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Compactness

Let h > 0 be small enough; V k(t, ) denote k= (¢,.) := k(t — h,.) and
kt(t,.) :=k(t+h,.).
Lemma 7. Let T > 0 s.f. ming 114, (1 +7¢) > a > 0. Thenforall h > 0 as above:

T T
// X6|ﬁ€ - ﬁe_|2+// (aﬂ?e - aﬂ?e_)Q < Ch1/3
0 B2K 0 Qs

T
and // Xeiie — xgag |2 < CRY/3,
Ba i
0
where for ¢t < 0 we extend n. by ng (thus d:ne by 0) and u. by 0. The constant C' does

not depend on € and . is the characteristic function of Qnﬁ (t).

Frechet-Kolmogorov = .. is relatively compact in L2 (0, T; L? (Bsx)) and
O is relatively compact in L2(0, T; L?(Qs)),
thus . is relatively compact in L2 (0, T LQ(Qnﬂ (1))).
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Passing fo the limif

Let T > 0 such that infe ming 7y g (1+76) > a > 0; (T, 7) = lime (0, 7).

e—0

Te -
e—0

Te —
e—0

815776 -
- e—0

Ue —
~ e—0

Ue —
e—0

XeUe —

4 e—0

Ne -

0

Ohm? =

~ 4 e—0

ue —

0

YV xu =

nin C%1/2(0,T;C%4(Qs)) (0< g < 1)
nin HY(0,T; H?(Qy))
dyn in L2(0,T; L?(Qs))
uin L2(0,T; L% (Bak))

in L*(0,T; Hy p, ur

stdes (BQK))
xu in L2(0, T; L2 (Bax))
nin C%1/2(0,7;C%9(Qs)) (0 < g < 1)
9¢m in L*(0,T; L*(Qs))
uin L2(0, T; L2 (Bax)),
(

xV x uin L2(0,T; L?(Baxk)).
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Passing fo the limit

Preservation (for e — 0) of the equality of velocities on the interface:
uc(t, z1, x2, 1 +nP(t, x1,22)) = (0,0, 9ne(t, x1, z2)) oNn (0,T) x Qs.

Clearly, (0,0, 0¢ne(t, x1,22)) — (0,0,0;n) in L?(0, T; L?(Qs)).
Let (C /2 = Qs X (0,/2))

Y

o= (anaatne) N Bog — Ca/Q
- R(0,0,&me) iN Ca/g

where R is a lifting from H/2(Q, x {a/2}) to H}

0,0, Ul g des (Cq/2) such that

div R(0,0,@tne) = 0in Ca/g,
R(ana8t77€)‘(1"bul“sides)ﬂac’a/2 — 0
R(0,0,@tne) XxXn = 0on FfﬁaCQ/Q.

e—0 —~

. —ve € L2(0, 7T, H' (B ), thus 3 a subsequence i — v, — v =1 — v
in L2(0, 7; H' (Bo o)) (v is the limit of ).

v safisfies the hypotheses of Lemma 4, thus +, ;) (1) = (0,0, 9:n). Prague, November ‘07 - p.90/10.



Numerics

Approaches for the simulation of FSI problem:s:

Front tracking methods:

The parfitioned approach combining the Eulerian setting for the fluid
with the Lagrangean formulation for the structure solves the two
involved subproblems separately (with the aid of standard methods);
the solution of the coupled system is obtained iteratively.

Monolithical methods: ALE (Arbifrary Lagrangean-Eulerian) method.

However, fracking large deformations and fopology changes can
become very difficult when dealing with these methods.

In the immersed boundary method (Peskin ‘02) the idea is to get rid
of any complex gridding requirements upon treating boundaries as
force terms in equations satisfied in a computational domain
overlapping with boundaries.

This method is rather suited for the case where structures are

low-dimensional objects immersed in the fluid.

Front capturing methods (frying to follow the interface in an implicit way):
level set methods, particle methods (Cottet et al. ‘02, ‘05)
Eulerian/Eulerian approach (Liu & Walkington ‘01).
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Numerics: outline of the ALE method

Notations:

~

Q := Qy U Q, is the initial configuration;

Q(t) :=Qf(t) UQs(t) is the current configuration;

x is a point in the initial configuration;

x Is a point in the current configuration.

Each material parficle is identified with ifs position in the reference configuration.

Let ¢ : Q x (0,T) — Q(t), (X,t) — x = ¢(%,t) satisfy detVge >0

(i.e., ¢ is an orientation preserving mapping).
Further notations:
% 2% p(x, 1)

t it »(x,t) (frajectory of the material particle x)

(%, t) = 9 (x,t) is the velocity of the particle %.

u(x,t) = u(x,t), x € Q(t), x = ¢(x,1).
Jg(%,t) := det Vzo(%,t).
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Numerics: outline of the ALE method

Since we cannot move the fluid domain Q¢ (t) along the frajectories of the
material particles, we infroduce another mapping, which in general does not
coincide with those trajectories:

A - Qf X (0, T) — Qf(t), (x,t) — x = A(X, t).
A is a computational mapping, not a physical one!

Notations:

W(x,t) := 24

(x,t) is the velocity of the fluid domain.
For x € Q(t) with x = A(x,t) define w(x, t) := w(x,t).
The mapping Aiss.t. A = ¢ on T';, and it is arbitrary anywhere else in Q.
JA(%,t) == det Vi A(%, t).

Proposition.

0T (%,t) = Ja(%,t) - diV w(A(X, 1), )

3J¢> (%,t) = Jy(%,t) - div w(o(X, ), t).
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Numerics: outline of the ALE method

Variational formulation of the FSI problem

Let o ¢, os be the Cauchy stress tensor for the fluid, respectively for the elastic
structure. Then = = J, - &, - (V) is the first Piola-Kirchhoff tensor.

Let ;s :=Jy - &5 - (Vz¢) ! - ns be the force exerted by the fluid on the
fluid-structure interface.
FSI problem:

Fluid: Find u(t) € H(Q(t)) s.1. u‘r o = G
fs

fo(t) “‘ V—|—fo(t)(u—W)-Vu-v—i—fQ 0y Of: Vv=0,

Vv eV, :={v: v(xt) =vA '(x), v€ H(Qy), ¥

- and
Trs

= 0 and

Structure: Find a1, (t) € H(Q) s.t. s o

Oty ~ = _ A

- s 2 Vgv=|x f¢s-v,

fQ Jo =5 V"'"fQ Vv frfs fsV
VY eV, = {veH(Q) : ( — 0},

Velocities at the inferface: Find w(t) € H! (Q4(¢)) s.t. w = uon Tss(t).
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Numerics: outline of the ALE method

Variational expression of the force acting on the structure:

Let (u, o ¢) be a solution of the fluid problem above and v be a function defined
onl'ss(t). Let R :T's5(t) — Q () be alifting operator.

Then

/ f'fs-{f:—/ 8—u‘~-7€(v)—/ (u—w)-Vu-R(v)—/ of: VR(V).
T, Qp(t) Ot 1% Q(t) Q (t)

ou

5t denotes here and above the ALE-derivative:

‘ X

ou ou _
e i(X,t) = E(A(XJ)J)
O0A  _ ou
= E(X’ t) - Vu(x,t) + E(X’ t)

= g—?(x, t) + w(x,t) - Vu(x,t).
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ALE method: discretization and numerical algorithms

Space discretization

The finite elements method (FEM) is used to discretize the variational formulation
of the FSI problem.,

We thereby assume that Qf and Q. are polygonal (polyhedral).
Let V] ¢ H'() be built on the mesh of Q¢ with e.g., P-finite elements.
Let @/ ¢ L2(€) be built on the mesh of O with e.g., P;-finite elements.
Let V§ C H'(Qs) be built on the mesh of Q. with e.g., P>-finite elements.

Let VI (Qf(t)) i= {vi, = Vi o AL, ¥, € VI

J . J _
Let Vi ,(Qf(t)) := {vi € VL (2 (1)), Vh‘rfs(wur;v — 0}
Let Q7 (2 (1) :={an = dn o A; ", dn € Q1 }.
Let Vi () := {5, € V5, {’h‘FD — 0},
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ALE method: discretization and numerical algorithms

Timme discretization

Let i+ e the displacement of the fluid domain: n, = A(x,t) — x.
Let 1, be the displacement of the structure: n, = ¢(x,1) — x.

Let 17+, be The displacement of the fluid-structure inferface:
Ngs =1 = N
f f ‘Ffs

sy
Let 6t be the time step of the discretization and t,, = ndt.
Known:

Q% (approximation of Q¢ (tn))

(u™,p") € VfL(Q?) X Q{L(Q}L) (approximations of velocity and pressure in
the corresponding discrete subspaces);

(n}, w™) € V1 (Q7) x V7 (Q7}) (approximations of the fiuid displacement
and velocity of the fluid domain);

(A2, an) € Vi (Qs) x V3 (2s) (approximations of displacement and
velocity of the structure).

Wanted: Q;ﬁ“,unﬂ ntl ot ,,~,,?+1 antl,
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ALE method: discretization and numerical algorithms

1. Fluid domain deformation: Assume "7}"“ is known.

Compute 7t as Illeng of 7! from '+ to O and define the fluid domain
f fs f f

velocity by wntl = n"“ — 7)) and the new domain Q” ™! .= Q7 + 6t - wnt1,
/ f /

At = A @Y |

2. Solving the fluid: Find (u™*+1,pn+t) € VI (QF) x Q1 ()T st

1 1
— u"ttov - — u” v 42 vD(u" ) : D(v)
5t Qn+1 6t Qn Qn—I—l
f f
—i—/ div(u"t @ (u"tt —w" ). v — / p"Tldivv = 0
f f
/ gdivu™™t = 0
n—+1
f
1
+1 _ ~n+1 =
" Fn—i—l T 5t (77’"]}8 o n?s)

fs

(Wt pn ) = Fa(apth) |
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ALE method: discretization and numerical algorithms

3. Fluid force acting on the structure: Compute fff f}}jl -v;, where v; - is the
s fs

trace on I' ;. of the basis function of V¢ associated to the node i of the
fluid-structure inferface.

The natural choice j‘rf (—p" I+ 2vD(u" 1)) - n - v; may be very difficult to
compute, thus one chooses instead:

1 1
/ iy, = — = u" R (v; )+ — / u"R(vi| )
I fs ot Jonrnt1 | TN ot Jaon Tfs
fs f f
—/ div(u" @ (u" Tt — w1 R(v; )
Q?‘l‘l Ffs

n+1 ~; , o n+1y . .
+/Qn+1 p"Trdiv R(v; Ffs) 2/Qn+1 vD(u" ™) : D(R(v; Ffs)).
! f

£77 = Fy(untt prtl) |
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ALE method: discretization and nhumerical algorithms

4. Solving the structure:;

1 ~n+4+1 < 1 ~n 1 ~n+1 4 ~n 5\ — n+1 =~
iy w g [ v e e = [,

%(ﬁgﬂ _ 7”77;) _ %(ﬁ?+1 + ﬁg) (midpoint rule).

';;'?':1 p f4(f}?’;—1) '

5. Fixed-point procedure: The computation of the unknowns at time ¢*+1 requires
solving the fixed-point problem

| |
= Fnth |

with F = F4 o0 F3 0 Fy o F7q.
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ALE method: discretization and numerical algorithms

A fixed-point algorithm:

1. Initialization: k& = 0. 7} "5 = 7%,

2. Move the fluid domain: 7} 7L | = F1(7}).

3. Solve the fluid: (u™ !, p" 1) = Fo (i} ).

4. Compute the fluid force acting on the structure: f?:,iﬂ = Fa(ulti pii).
5. Solve the structure: 737 | = Fu(f} 1, ).

Until convence go to step 2.

Problem: For haemodynamics problems this algorithm quickly diverges. It needs
some relaxation.

Prague, November ‘07 - p.101/10;



ALE method: discretization and numerical algorithms

A fixed-point algorithm with relaxation:

1. Initialization: k = 0, 7} 7 = 7}, + S6tul — Fotal ™",

2. Move the fluid domain: 7} 7L | = F1(7}).
3. Solve the fluid: (u™ !, p" 1) = Fo (i} ).
4. Compute the fluid force acting on the structure: f?:,iﬂ = Fa(ulti pii).
5. Solve the structure:
Afener = FalEfli)
’7775:,;14@ - wk%?:,li+1 + (1 — Wl-c)'f??j;i

wg, IS to be chosen with the aid of the Aitken acceleration formula (for
some references see e.g., Gerbeau ‘03).
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ALE method: discretization and numerical algorithms

Aitken acceleration: a method used to accelerate the convergence of the fixed
point schema.

We look for a choice of w;,. Heuristically:
1. k=0,nyknown,

2.
7A7k:+1 = F(ng)

A1t = Mpor — Mg

3. MNk+1 = wkﬁzﬁq + (1 —wi)ng =My + wWrhi41.
Let us consider an intuitive, simple form of 7 : R — R (affine function)

Meb —> Observe that the algorithm diverges if
the slope w;, exceeds 1.

How does it behave in n dimensions?
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ALE method: discretization and numerical algorithms

Extension of the previous heuristic considerations 1o n dimensions (F is still
‘affine’);

Fn=An+b,AcR"™" beR"

We look for a fixed point n*, thus b = (I — A)n*.
With an evaluation of 7 we can write 7, | = F(n,) = An, + b, thus
b=71—Any =hp1 + - A)ng.
It follows that n* ==, + (I — A) " thy 4.
Now compare to the relaxation formula n,. . | = 1, + wihy41 1o find
wp =w=(I—-—A)"1,
Remarks.
We obtain the same result with the Newton method.

The function F seldom has such a nice, affine form.
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ALE method: discretization and numerical algorithms

If we know two values (evaluations) of F, than we can find the fixed point:

For the first evaluation: n° = n,, + why 1.

For the other evaluation: %* = N1 + why.

For a ‘perfect’ w we would get 7j* =7 = n*.

Thus, we look for w € R minimizing the difference between the evaluations:

1
C(w) = 5”% — M1 +w(hpr1 — hy)|?

From ¢’(w) = 0 follows then

B 1
lhpi1 — hy|?

w (M, — Me—1, hpr1 — hy),

withhy 1 —hy = F(ny ) — F(ng) — (1 — mi—1).
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Conclusions and comments

We have pointed out some modeling aspects of FSI problems related to
haemodynamics.

We have shown the existence of a solution to the coupled steady-state
problem of a 3D fluid flowing through a very long tube with thickness
(periodic BCs). +/ (S. '06)

We have shown the existence of a solution to the coupled time
dependent 3D fluid-3D elastic structure intferaction problem in a cylindrical
domain. +/ (S. '07)

We have shown the existence of a weak solufion to the coupled time
dependent 3D fluid-2D elastic structure interaction problem in a
noncylindrical domain. +/ (S. "'04)

The problem with both the cover and the bottom of the box being elastic
can be freated in a similar way. +/

We outlined some popular numerical methods for simulating FSI problems.
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Conclusions and comments

Better (more realistic) models:

¢ Existence result for a stationary 3D/3D FSI problem in a tube segment and
with nonperiodic BCs. /(8. '07)

¢ Existence result for the problem of a fluid contained in a cylinder with fixed
ends and bounded by a thin elastic shell. / (G. "04)

®  Which are the best boundary conditions?
®  What about considering longitudinal displacements?

® Permeable (nonhomogeneous) elastic walls.
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