Motion of curves with area constraint and applications

Michal Beneš (FJFI ČVUT)

in collaboration with

Miroslav Kolář (FJFI ČVUT) and Daniel Ševčovič (CU Bratislava)

Abstract

In the contribution we investigate the planar curvature flow of one or more curves with the area constraint. This type of curvature flow has been studied e.g. in [1, 2] for closed curves, in [3] for open curves, and in [4] for curves on a surface. The motion law is treated by means of the Allen-Cahn equation with non-local terms. We consider this motion within the context of applications such as reconstruction of falling-droplet shape, or in solid-phase recrystal-lization. For this purpose, the anisotropy is built into the evolution law as in [5]. In the discussion of computational results, we focus on the special case of motion of several curves whose motion has a competitive character.

References

- [1] L. Bronsard and B. Stoth. Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation. SIAM Journal on Mathematical Analysis, 28(4):769–807, 1997.
- [2] M. Kolář, M. Beneš, and D. Ševčovič. Computational studies of conserved mean-curvature flow. Mathematica Bohemica, 139(4):677–684, 2014.
- [3] M. Kolář, M. Beneš, and D. Ševčovič. Computational analysis of the conserved curvature driven flow for open curves in the plane. Mathematics and Computers in Simulations, 126:1–13, 2016.
- [4] M. Kolář, M. Beneš, and D. Ševčovič. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete and Continuous Dynamical Systems Series B, 22(5):28–37, 2017.
- [5] M. Beneš. Diffuse-interface treatment of the anisotropic mean-curvature flow. Applications of Mathematics, 48, No. 6:437–453, 2003.