Relative Energy Methods for Models of Compressible Multi-Phase Flows

Jan Giesselmann University of Stuttgart Institute of Applied Analysis and Numerical Simulations

Lecture 2: Discontinuous Galerkin Schemes for Compressible Multi-Phase Dynamics

We consider the following one-dimensional model in Lagrangian coordinates

$$\partial_t \tau - \partial_x u = 0$$

$$\partial_t u - \partial_x (h'(\tau)) = -\kappa \partial_{xxx} \tau$$
 (1)

where τ is specific volume, u is velocity, $h = h(\tau)$ is an energy density given by a constitutive relation and $\kappa > 0$ is a capillarity constant. For appropriate boundary conditions smooth solutions of (1) conserve the energy functional

$$\int h(\tau) + \frac{\kappa}{2} (\partial_x \tau)^2 + \frac{1}{2} u^2 \, dx.$$

Equation (1) can be seen as a Lagrangian version of a special case of Euler-Korteweg system.

We study the construction of stable numerical methods of Runge-Kutta discontinuous Galerkin type for (1) and describe how the relative energy framework, discussed in the first lecture, can be used for deriving a priori and a posteriori error estimates for such discretisations of (1).

This lecture is a continuation of the lecture which will be delivered on 9 November at the Seminar on Continuum Mechanics, at 15:40 in lecture hall K1.